MAP estimate of a linear model

This one is simple, elegant and a nice bridge between the frequentist and Bayesian worlds.

θMAP=argmaxθp(θ|D)=argmaxθp(D|θ)p(θ)p(D)=argmaxθp(D|θ)p(θ)=argmaxθlogp(D|θ)+logp(θ)=argmaxθlogi=1Np(yi|xi,θ)+logp(θ)=argmaxθi=1Nlogp(yi|xi,θ)+logp(θ)=argmaxθi=1NlogN(yi|θTxi,σ2)+logN(θ|0,α2)=argmaxθi=1N12σ2(yiθTxi)212α2θTθ=argminθi=1N(yiθTxi)2+σ2α2θTθ=argminθi=1N(yiθTxi)2+λθTθ

Which is the well-known Ridge regression objective. λ=σ2α2 is the regularisation parameter.